JANUARY 31, 2020 WORLDWIDE USE OF CRUDE OIL

The number of barrels (42 U.S. GALLONS) per day demand for crude oil (Statista.com) for the last ten (10) years is:

YEAR	BARRELS USED PER DAY
2010	$86,400,000$
2011	$89,000,000$
2012	$89,800,000$
2013	$91,800,000$
2014	$92,700,000$
2015	$94,900,000$
2016	$96,200,000$
2017	$97,900,000$
2018	$99,300,000$
2019^{*}	$100,300,000^{*}$
2020^{*}	$101,600,000^{*}$
*PROJECTED	

U.S. GALLONS PER DAY
3,628,800,000
3,738,000,000
3,771,600,000
3,855,600,000
3,893,400,000
3,985,800,000
4,040,400,000
4,111,800,000
4,170,600,000
4,212,600,000*
4,267,200,000*

U.S. GALLONS PER YEAR
1,324,512,000,000
1,364,370,000,000
1,376,634,000,000
1,407,294,000,000
1,421,091,000,000
1,454,817,000,000
1,474,746,000,000
1,500,807,000,000
1,522,269,000,000
1,537,599,000,000*
1,557,528,000,000*

Normally, the U.S. Gallons per day and the U.S. Gallons per year would be shown exponentially
 Michael Schafer was written for the average non-scientific person) showing these numbers written out long hand will have more of an impact.

For example, the 2020 estimated U.S. Gallons per year would be 1 trillion, 557 billion, 528 million gallons of crude oil used per year. Think about this number when you buy your next gallon of milk or water.

Another Google search of how many U.S. Gallons of gasoline, diesel fuel and jet fuel can be obtained from refining one (1) barrel of (42 U.S. Gallons) of crude oil:

Gasoline: 19-20 U.S. Gallons (multiple sources - 45\% to 47.6\%)
Diesel Fuel: About 12 U.S. Gallons (multiple sources - 28.6\%)
Jet Fuel: About 4 U.S. Gallons (multiple sources - 9.5\%)

The following chart applies these percentages to the worldwide gallons of crude oil used per year:

WORLDWIDE U.S.

YEAR	GALLONS PER YEAR
2010	$1,324,512,000,000$
2011	$1,364,370,000,000$
2012	$1,376,634,000,000$
2013	$1,407,294,000,000$
2014	$1,421,091,000,000$
2015	$1,454,817,000,000$
2016	$1,474,746,000,000$
2017	$1,500,807,000,000$
2018	$1,532,269,000,000$
2019^{*}	$1,557,528,000,000^{*}$
2020^{*}	

45\% FOR GASOLINE
596,030,400,000 613,966,500,000 619,485,300,000 633,282,300,000 639,490,950,000 654,667,650,000 663,635,700,000 675,363,150,000 685,021,050,000 691,919,550,000* 700,887,600,000*

28.6\% FOR DIESEL FUEL

378,810,432,000
390,209,820,000
393,717,324,000
402,486,084,000
406,432,026,000
416,077,622,000
421,777,356,000
429,230,802,000
435,368,934,000
439,753,314,000*
445,453,008,000*

9.5\% FOR JET FUEL

125,828,640,000 129,615,150,000 130,780,230,000 133,692,930,000 135,003,645,000 138,207,615,000 140,100,870,000 142,576,665,000 144,615,555,000 146,071,905,000* 147,965,160,000*
*PROJECTED

Between 83.1% and 85.7% of the crude oil being pumped out of the ground is refined to produce liquid fuels which are being burned, releasing their carbon dioxide $\left(\mathrm{CO}_{2}\right)$ into our atmosphere.

It is time to do another Google search to find out how much carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is being released into our atmosphere by burning these liquid fuels (Gasoline, Diesel and Jet Fuels). Multiple sources reveal the following:

- Gasoline - About 19.64 U.S. Pounds of CO_{2} Per Gallon
- Diesel Fuel - About 22.38 U.S. Pounds of CO_{2} Per Gallon
- Jet Fuel - About 20.00 U.S. Pounds of CO_{2} Per Gallon

Since the Bourke Engine cannot replace a jet engine, the following chart only calculates the carbon dioxide (CO2) released into our atmosphere from the burning of gasoline and diesel fuel:

GASOLINE - U.S. GALLONS U.S. POUNDS/U.S. TONS OF CO_{2} RELEASED INTO

YEAR
2010
2011
2012
2013
2014
2015
2016
2017

PER YEAR X 19.64 POUNDS 596,030,400,000 x $19.64=$ $613,966,500,000 \times 19.64=$ $619,485,300,000 \times 19.64=$ $633,282,300,000 \times 19.64=$ $639,490,950,000 \times 19.64=$ $654,667,650,000 \times 19.64=$ $663,635,700,000 \times 19.64=$ $675,363,150,000 \times 19.64=$ OUR ATMOSPHERE PER YEAR - BURNING GASOLINE 11,706,037,056,000 LBS. OR 5,853,018,528 U.S. TONS $12,058,302,060,000$ LBS. OR 6,029,151,030 U.S. TONS $12,166,691,292,000$ LBS. OR 6,083,345,646 U.S. TONS $12,437,664,372,000$ LBS. OR $6,218,832,186$ U.S. TONS $12,559,602,258,000$ LBS. OR 6,279,801,129 U.S. TONS $12,857,672,646,000$ LBS. OR 6,428,836,323 U.S. TONS $13,033,805,148,000$ LBS. OR 6,516,902,574 U.S. TONS $13,264,132,266,000$ LBS. OR 6,632,066,133 U.S. TONS

Computations continued from previous page

	GASOLINE - U.S. GALLONS	U.S. POUNDS/U.S. TONS OF CO2 RELEASED INTO
YEAR	PER YEAR X 19.64 POUNDS	OUR ATMOSPHERE PER YEAR - BURNING GASOLINE
2018	685,021,050,000 $\times 19.64=$	13,453,813,422,000 LBS. OR 6,726,906,711 U.S. TONS
2019*	691,919,550,000* $\times 19.64=$	13,589,299,962,000 LBS. OR 6,794,649,981 U.S. TONS*
2020*	700,887,600,000* $\times 19.64=$	13,765,432,464,000 LBS. OR 6,882,716,232 U.S. TONS*
*ESTIMATES		
	DIESEL - U.S. GALLONS	U.S. POUNDS/U.S. TONS OF CO 2 RELEASED INTO
YEAR	PER YEAR $\times 22.38$ POUNDS	OUR ATMOSPHERE PER YEAR - BURNING DIESEL
2010	378,810,432,000 $\times 22.38=$	8,477,777,468,000 LBS. OR 4,238,888,734 U.S. TONS
2011	390,209,820,000 $\times 22.38=$	8,732,895,771,600 LBS. OR 4,366,447,885 U.S. TONS
2012	393,717,324,000 $\times 22.38=$	8,811,393,711,120 LBS. OR 4,405,696,855 U.S. TONS
2013	402,486,084,000 $\times 22.38=$	9,007,638,559,920 LBS. OR 4,503,819,280 U.S. TONS
2014	$406,432,026,000 \times 22.38=$	9,095,948,741,880 LBS. OR 4,547,974,371 U.S. TONS
2015	416,077,622,000 $\times 22.38=$	9,311,817,180,360 LBS. OR 4,655,908,590 U.S. TONS
2016	421,777,356,000 $\times 22.38=$	9,439,377,227,280 LBS. OR 4,719,688,614 U.S. TONS
2017	429,230,802,000 $\times 22.38=$	9,606,185,348,760 LBS. OR 4,803,092,674 U.S. TONS
2018	435,368,934,000 $\times 22.38=$	9,743,556,742,920 LBS. OR 4,871,778,371 U.S. TONS
2019*	439,753,314,000* $\times 22.38=$	9,841,679,167,320 LBS. OR 4,920,839,584 U.S. TONS*
2020*	445,453,008,000* $\times 22.38=$	9,969,238,319,040 LBS. OR 4,984,619,160 U.S. TONS*

[^0]The following chart takes the U.S. tons of carbon dioxide dumped into our atmosphere by the burning of Gasoline and Diesel fuel in our existing Internal Combustion Engines (ICE-Gas and Diesel), adds them together and using online conversion, converts U.S. TONS to GIGATONNES:

YEAR	U.S. TONS OF CO 2
2010	$\frac{5 R O M}{}$ GASOLINE
2011	$6,023,018,528$
2012	$6,083,34,030$
2013	$6,218,832,186$
2014	$6,279,801,129$
2015	$6,428,836,323$
2016	$6,516,902,574$
2017	$6,632,066,133$
2018	$6,726,906,711$
2019^{*}	$6,794,649,981^{*}$
2020^{*}	$6,882,716,232^{*}$

\(\left.$$
\begin{array}{c}\begin{array}{c}\text { U.S. TONS OF CO } \\
2\end{array}
$$

FROM DIESEL FUEL\end{array}\right]\)| $4,238,888,734$ |
| :---: |
| $4,366,447,885$ |
| $4,405,696,855$ |
| $4,503,819,280$ |
| $4,547,974,371$ |
| $4,655,908,590$ |
| $4,719,688,614$ |
| $4,803,092,674$ |
| $4,871,778,371$ |
| $4,920,839,584^{*}$ |
| $4,984,619,160^{*}$ |

TOTAL U.S. TONS CO 2 FROM GASOLINE \& DIESEL

10,091,907,262

GIGATONNES

10,395,598,915
9.155
-9.431
10,489,042,501 9.515
$10,722,651,466 \quad 9.727$
10,827,775,500 9.823
$11,084,744,913 \quad 10.056$
11,236,591,188 10.194
$11,435,158,807 \quad 10.374$
11,598,685,082 10.522
11,715,489,565* 10.628
11,867,335,392* 10.766
*ESTIMATES

A final Google search is odne for carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions from fossil fuel sources. The Global Carbon Project provides the following informtation for 2010 through 2018:

YEAR	CO_{2} EMISSIONS (GIGATONNES) FROM FOSIL FUEL SOURCES	TOTAL GIGATONNES OF CO_{2} FROM GASOLINE \& DIESEL	PERCENTAGE OF TOTAL CO $_{2}$
2010	33.1	9.155	27.66\%
2011	34.4	9.431	27.42\%
2012	35.0	9.515	27.19\%
2013	35.3	9.727	27.56\%
2014	35.6	9.823	27.59\%
2015	35.5	10.056	28.33\%
2016	35.7	10.194	28.55\%
2017	36.2	10.374	28.66\%
2018	37.1	10.522	28.36\%

Since the Bourke Engine uses less than $1 / 2$ as much fuel as a conventional ICE, swirching to the Bourke Engine coupled with a Permanent Magnet AC (PMAC) motor/generator starting with all 2021 engine manufacturing will start the world down the path to significantly less CO_{2} emissions (average of 9.866 Gigatonnes per year over the last 9 years if the engine had been in use during that time frame). The use of fossil fuel (crude oil) would continue until fuel from algae can come on line (the topic for the next blog posting).

Companies would also have to develop conversion kits for converting existing vehicles to electric with Bourke Engine/PMAC range extenders. Here is some food for thought:

- In 2018, the estimated world population was 7,500,000,000 $\times 1.984$ LBS. Of CO_{2} exhaled per person, per day, 365 days of the year $=5,431,200,000,000 \mathrm{LBS}$. $\mathrm{Of} \mathrm{CO}_{2}$ for all of the people of this world (Google Searches).
- In 2018, burning Gasoline and Diesel pumped $23,197,370,164,920$ LBS. Of CO_{2} into our atmosphere, 4.27 times as much as the people of the world exhaled.

Russell Bourke attempted to lead the world down a different path with the invention of his engine in the 1930's. The world chose not to listen.

Greta Thunberg, you have captured the world's attention (especially the youth) about a problem that has been around for a long time. Maybe the world will listen this time, because if it doesn't, we will destroy our planet.

Energy is a precious thing and we have used it like there is no end. Even the energy we get from our sun will be gone at some point in the future. The video referenced in the website, Crude: The Incredible Journey of Oil, describes a super greenhouse world would not be a habitable place for human beings, with the posible exception of Anartica or Northern Greenland. A quote from K. Smith taken from Dr. D. Michael Schafer's climate change primer says it all:
"The rich will find their world to be more expensive, inconvenient, uncomfortable, disrupted and colourless; in general more unpleasant and unpredictable, perhaps greatly so. The poor will die."

The problem, the world is addicted to crude oil and other fossil fuels, but there is a solution:

- Cut the use of liquid transportation fuels in half (or more), with the use of the Bourke Engine coupled with a PMAC motor/generator.
- Stop pumping crude oil from the ground and shift to bio-crude made from algae. Exxon Mobil and Synthetic Genomics, Inc. (SGI) are targeting the production of 10,000 barrels per day of bio-crude, made from algae, by 2025. During World War II, 1.89 billion dollars was spent on the Manhatten Project (21.3 billion in 2019 u.s. dollars) to develop a weapon of mass destruction that could destroy our world. The world needs to spend 100 times that much (if necessary) to do the research and develop the infrastructure to support the production of bio-crude to replace crude oil that we are pumping from the ground. While making 10,000 barrels per day of bio-crude by 2025 is a small start, the target needs to be 100 million barrels per day by 2023 . All of the money big oil is investing in pumping oil from the ground needs to be diverted to the production of biocude. For the average family that is spending $\$ 2.50 /$ gal for gasoline, they can afford to spend $\$ 5.00 / \mathrm{gal}$ for algae fuel if they are getting twice the mileage from a Bourke Engine coupled with a PMAC motor/generator.

The next blog posting will go into more detail on bio-fuels from algae.

[^0]: *ESTIMATES

